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We present an alternative approach to the calculation of the lifetime of a single excited electron �hole� which
interacts with the Fermi sea of electrons in a metal. The metal is modeled on the level of a Hamilton operator
comprising a pertinent dispersion relation and scattering term. To determine the full relaxation dynamics we
employ an adequate implementation of the time-convolutionless projection operator method. This yields an
analytic expression for the decay rate which allows for an intuitive interpretation in terms of scattering events.
It may furthermore be efficiently evaluated by means of a Monte Carlo integration scheme. As an example we
investigate aluminum using, just for simplicity, a jellium-type model. This way we obtain data which are
directly comparable to results from a self-energy formalism. Our approach applies to arbitrary temperatures.
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I. INTRODUCTION

For several decades, the dynamics of excited electrons in
metals has been the subject of intense research in theoretical
and experimental solid-state physics.1–10 These investigations
are motivated by the fact that a lot of physical and chemical
properties of metallic materials depend essentially on those
dynamics.11–13 Lifetimes of �photo�excited electrons in met-
als are always short �on the order of femtoseconds� but the
immense progress in ultrafast laser technology now allows
for an experimental determination of such times, in which
corresponding investigations are ongoing.14

Today a number of methods are used to calculate lifetimes
of electrons. Practically all of them are formulated within the
framework of Green’s functions �many-body theory� and aim
at determining the self-energy, particularly its imaginary
part.15–17 Many of them employ a screened interaction �“W”�
and a truncated expansion of the self-energy in terms of this
screened interaction �“GW approximation”�.7,8,18–27 The
screened interaction is frequently obtained through a
“random-phase approximation” �RPA�.11 For a simple suffi-
ciently dense homogeneous gas of electrons interacting
through Coulomb repulsion �jellium model�, an approach
along the above scheme is even feasible analytically and
yields a closed expression for the lifetimes close to the Fermi
edge �see below�.1,2 In a certain sense �which is described in
more detail below, Eq. �17��, this approach leads to lifetimes
which may quantitatively be compared to experimental data
on, e.g., aluminum.4,23,27 Of course timely state of the art
approaches go beyond jellium and exploit not only the tradi-
tional self-energy formalism but also density-functional
methods, etc.23–26

Our approach is, in contrary, not based on Green’s func-
tions at all but on projection operator techniques. A main
motivation of our work is to demonstrate that a pertinent
projective approach28–35 is also capable in producing quanti-
tative results on lifetimes. Our central formula from which
the lifetimes are eventually calculated is in accord with ex-
pressions that may be derived within the above many-body
approach �see below, Eq. �16��. Furthermore it allows for an
interpretation in terms of scattering events. This encourages
further development of projection techniques as alternative

quantitative tools for the investigation of relaxation and
transport dynamics in condensed-matter systems �find more
on this at the end of Sec. IV�. However, our approach starts
from an effective model comprising pertinent quasiparticle
dispersion relations and an appropriate screened interaction.
The �generically subtle� provision of such a suitable effective
model is not part of our present analysis; the effective model
thus has to be supplied by other means.

The paper at hand is organized as follows: in Sec. II we
give a very brief introduction to the time-convolutionless
projection operator method35 and apply it to a general inter-
acting quantum gas thus obtaining an expression for the elec-
tronic lifetime. In Sec. III we evaluate this expression nu-
merically for a “screened” jellium model tuned to describe
aluminum. We compare our results to other available data
and comment on computing times. Eventually we close with
discussion, summary, and outlook.

II. PROJECTIVE APPROACH TO OCCUPATION NUMBER
DYNAMICS IN INTERACTING QUANTUM GASES

To determine the lifetime of an electron initially occupy-
ing some momentum eigenstate, we analyze the dynamics of
the corresponding occupation number. A formalism which
allows for such an analysis is the TCL method.35 In general
the latter is a perturbative projection operator technique
which produces autonomous equations of motion for the
variables of interest �“relevant information”�. The technique
may be applied to quantum system with a Hamiltonian of the

type Ĥ= Ĥ0+�V̂, where � has to be in some sense small.35 In
order to apply this method one first has to construct a suit-
able projection operator P. Formally, this is a linear map
which projects any density matrix ��t� to a matrix P��t� that
is determined by a certain set of variables. These variables
should match with the variables of interest. Moreover P has
to fulfill the property of a projection operator, that is, P2

=P. For initial states with P��0�=��0� the TCL scheme
leads to a time-local differential equation for the dynamics of
P�:
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�tP��t� = ��t�P��t�, ��t� = �
k=1

�

�k�k�t� , �1�

where the perturbative expansion used in the last equations is
in principle exact. However, for a description to leading or-
der, which is, typically and in our case, the second order, one
has to determine �2�t�. Whether or not a leading-order de-
scription will yield a reasonable result is a somewhat subtle
question36 but the expansion is well controlled and system-
atic, i.e., in principle higher order terms could be incorpo-
rated in a straightforward manner.35 A widely accepted indi-
cator for the validity of the truncation is a clear time scale
separation between the resulting relaxation dynamics and the
decay of the correlation function, the latter being introduced
below. However, here we are going to focus on the leading
order and comment on the time scales below when we even-
tually arrive at concrete lifetimes. In the literature35 one finds

�2�t� = �
0

t

dt�PL�t�L�t��P , �2�

with L�t�= ı
� �V̂�t� ,#�, where # denotes a placeholder for an

operator which shall be inserted into the commutator. V�t�
refers to a perturbation in the interaction picture. With Eqs.
�1� and �2� we obtain

�tP��t� = �
0

t

dt�PL�t�L�t��P��t� . �3�

Now for a concrete application we have to specify the un-
derlying quantum model and a suitable projection operator.

The systems we investigate are interacting quantum gases,
here of the “spinless fermions” type. The corresponding
Hamiltonians may be written as

�
k

�kak
†ak

Ĥ0

+
1

2 �
k,l,q

V�q�ak+q
† al−q

† alak

V̂

,

�4�
where �k denotes a dispersion relation of free particles and
V�q� is the matrix elements of an interaction which depends
on the concrete system. This Hamiltonian is of the above

mentioned form as long as the interaction term V̂ is in ad-
equate sense “small” �see below�. As will be demonstrated
below �cf. Sec. III� it is thus reasonable to choose for �k
pertinent quasiparticle dispersion relations and particularly
for V�q� an adequate screened interaction. Note that we ne-
glect the spin quantum number since the system we consider
in this work is paramagnetic, and without any magnetic
fields the dispersion relation is the same for both spin chan-
nels. Below we are going to take care of this “spin degen-
eracy” in a very simple form �cf. text following Eq. �18��.
For the noninteracting many-particle system we may directly
write down the wave-number �momentum� dependent
“single-particle equilibrium density operator” as

�j
eq
ª f j��,T�aj

†aj + �1 − f j��,T��ajaj
†, �5�

with f j�� ,T�= �exp����j�−�� /kBT�+1�−1 being the Fermi
distribution. Since we are interested in temperature regimes
close to T=0 K but still T�0 K, we can set the chemical
potential �	�F. Further we abbreviate f j��F ,T� as f j. The
equilibrium density operator, again for the noninteracting
case, of the total system, �eq, may be written as the tensor
product of the single-particle density operators, i.e.,

�eq
ª �

i
�i

eq, note also �̃ ª �
i�j

�i
eq. �6�

Here, for later reference, �̃ denotes the total density operator
of the system which does not contain the subspace with re-
spect to the momentum mode j, i.e., it is �eq= �̃ � �j

eq. We
should, also for later reference, mention here that while �eq

is strictly speaking just the equilibrium state of the noninter-
acting system, it is routinely considered to describe the
single-particle properties of the weakly interacting system
more or less correctly. Thus, if single-particle observables
relax toward equilibrium due to the interactions �scattering�,
we expect them to relax toward values corresponding to �eq.

For the investigations of the dynamics of excited states
we define an operator �j �for the remainder of this paper 
j�
denotes the excited state� as

�j ª �1 − f j�aj
†aj − f jajaj

† = aj
†aj − f j, �7�

which describes the deviation of the mode occupation num-
ber nj=aj

†aj from its thermal equilibrium. Now, in order to
apply the TCL method to this model we construct a suitable
projector as follows:

P��t� = �eq +
1

�j
2Tr��j��t���̃ � �j, �8�

with ��t� being the density operator which describes the ac-
tual state of the system, dj�t�ªTr��j��t�� denotes the time-
dependent expectation value of �j, and �j

2
ª �1− f j�2+ f j

2

=Tr��j
2�. It is straightforward to show that with the above

definitions P is a projector and fulfills P2��t�=P��t�. Note
that Tr��eq�j�=0 and Tr��j�̃ � �j�=�j

2. Before we eventu-
ally concretely apply Eq. �3� to our model we make the fol-
lowing approximation for an expression that appears in the
computation of Eq. �3�:

L�t��P��t� =
ı

�
�V̂�t��,�eq� +

ı

�
�V̂�t��,�̃ � �j�

dj�t�
�j

2

	
ı

�
�V̂�t��,�̃ � �j�

dj�t�
�j

2 , �9�

The neglected commutator term essentially describes the dy-
namics of the equilibrium state of the noninteracting system.
Eventually we are interested in a single-particle observable.
As already mentioned above, the equilibrium state of the
noninteracting system is believed to reasonably describe
single-particle observables in equilibrium even for weakly
interacting systems. Since an equilibrium state is constant,
the above commutator should not significantly contribute to
the relevant dynamics; thus we drop it. Keeping the term and
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performing all following steps yields eventually an expres-
sion which can explicitly be shown to be indeed negligible in
the weak-coupling limit. For clarity and briefness we omit
this calculation here.

If we apply now Eq. �3� to Eq. �8� and make use of Eq.
�9�, we obtain

�tP��t� =
1

�j
2�tdj�t� · �̃ � �j

= �
0

t

dt��eq − �
0

t

dt�
1

�j
4�2

	Tr���j�V̂�t�,�V̂�t��,�̃ � �j�����̃ � �jdj�t� .

�10�

Multiplying both sides of Eq. �10� with �j and taking the
trace leads to

�tdj�t� = −
1

�2�j
2�

0

t

dt� Tr��j�V̂�t��V̂�t��,�̃ � �j���

� �t�

dj�t� ,

j
�11�

where �j�t� appears as a time-dependent damping rate of the
mode j. If �j�t� turns out to be approximately time indepen-
dent, the usual exponential relaxation results. With the sub-

stitution t�= t−
 and exploiting ��̃ � �j , Ĥ0�= ��j , Ĥ0�=0 as
well as some trace properties, we obtain for the rate:

�j�t� =
1

�2�j
2�

0

−t

d�Tr��V̂���,�̃ � �j� · �V̂�0�,�j��

C���

,

�12�

where C�
� denotes the correlation function which is real due
to the fact that both commutators are Hermitian. The con-
crete evaluation of this expression with respect to our model
is straightforward but somewhat lengthy. Thus the full com-
putation is given in the Appendix, here we only give and
discuss the results. After exploiting the commutators within
the trace, we finally obtain for the rate:

�j�t,T� =
1


j
= −

2

�2�j
2�

k,q
�

0

−t

d

V�q�
2F�k,q,j,T�

	 cos���k+q + �j−q − �k − �j�
�

=
2

�2�j
2�

k,q

V�q�
2F�k,q,j,T�t sinc���k,q,j�t� ,

�13�

with

��k,q,j� ª �k+q + �j−q − �k − �j,

F�k,q,j,T� ª �1 − f j��1 − f j−q��1 − fk+q�fk

F1�k,q,j,T�

+ f jf j−qfk+q�1 − fk�

F2�k,q,j,T�

,

�14�
and sinc��t� denotes the sinus cardinalis. Obviously the in-
tegral �−�

+�t sinc��t�d� is independent of t. Furthermore the
function gets more and more peaked with increasing t such
that, as well known,

lim
t→�

sin��t�
�

= ���� . �15�

Hence, since dispersion relations are smooth functions of the
wave number, we expect the rate �j�t ,T� to become indeed
time independent for times larger than 
c if 1 /
c is an energy
scale on which dispersion relations may be linearized. Thus
for times t larger than 
c we may with good precision ap-
proximate �here we neglect the factor �j

−2 since for tempera-
tures T	0 K it is �j

−2	1�:

�j�T� =
1


j
=

2�

�
�
k,q


V�q�
2��k+q + �j−q − �k − �j�

	 ��1 − f j��1 − f j−q��1 − fk+q�fk + f jf j−qfk+q�1 − fk�� .

�16�

This expression is one of our main results. In principle it
allows for a direct calculation of lifetimes for any fermionic
system with given quasiparticle dispersion relations and
screened scattering term. Very similar formulas can be found
in textbooks in the context of transport and relaxation, see,
e.g., Refs. 10 and 11. They are often derived on the basis of
an ad hoc application of Fermi’s golden rule. A closer look
reveals that such an expression can also be obtained from an
analysis along the lines described in the introduction �“RPA
GW”� by using the static-limit form of the screened interac-
tion. Since our further quantitative determination only con-
sists in a numerical evaluation of Eq. �16� the outcome is
equivalent to the one obtained by the above treatment. More-
over since, as outlined in the following, Eq. �16� is in accord
with a standard scattering interpretation, obviously both, the
projective and the above version of the many-body approach
amount more or less to the counting of scattering events.

The contributions to the decay rate corresponding to F1
and F2 allow for an intuitive interpretation, at least for low
temperatures.

F1: this term accounts for the decay of an electron from a
momentum mode j above the Fermi sea, cf. Fig. 1�a�. Due to
the factor �1− f j� it only significantly contributes to the oc-
cupation number dynamics of such modes that are unoccu-
pied in equilibrium. Those occupation numbers may only
deviate from equilibrium toward an excess of electrons. Ac-
cording to the other three factors only those summands con-
tribute that correspond to the electron at j colliding with an
electron from within the Fermi sea k, such that the postcol-
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lision momenta k+q and j−q lay in the unoccupied region
above the Fermi sea.

F2: this term accounts for the decay of a hole from a
momentum mode j within the Fermi sea, cf. Fig. 1�b�. Due to
the factor f j it only significantly contributes to the occupation
number dynamics of such modes that are occupied in equi-
librium. Those occupation numbers may only deviate from
equilibrium toward a shortage of electrons, i.e., holes. Ac-
cording to the other three factors only those summands con-
tribute that correspond to two electrons from within the
Fermi sea k+q and j−q colliding such that one postcollision
momentum k lies in the unoccupied region above the Fermi
sea and the other lays exactly at j such as to fill up the hole.

III. APPLICATION TO A JELLIUM MODEL WITH
SCREENED INTERACTION

In this section we now apply our result for the decay rates
to a jellium model featuring a Thomas-Fermi screened inter-
action. The latter will eventually be tuned to correspond to
aluminum. However, to repeat, the main intention of this
work is not to calculate decay rates in aluminum with ex-
treme precision but to concretely demonstrate the feasibility
of our method. The Hamiltonian of the model is given by

ĤJ =
�2

2me
�
k

k2ak
†ak +

1

2 �
k,l,q

e2

��0�q2 + qTF
2 �

ak+q
† al−q

† alak,

�17�

where � denotes the volume of the solid and qTF the so-
called Thomas-Fermi wave number which is related to the
Fermi wave vector and the Wigner-Seitz radius by
�qTF /kF�2=0.665rS �with rS= � 3

4��0
�1/3 1

a0
, a0 being the Bohr

radius, �F= �9� /4�2/3 1
rS

2 �Ry�, kF= �9� /4�1/3 1
a0rS

, and qTF

= �12 /��1/3 1
a0rS

�. Note that our model only comprises elec-
trons, no phonons. Thus the result on the decay rate has to be
compared to that part of the total decay rate that stems from
electron-electron scattering only. In real aluminum there is
evidence that the total lifetime is also significantly shortened
due to electron-phonon scattering.4,27 We apply now Eq. �16�
to this model which yields

�j�T� =
1


j
=

4�

�
�
k,q
� e2

��0�q2 + qTF
2 ��2

F�k,q,j,T�

	 ��k+q + �j−q − �k − �j� , �18�

where the auxiliary factor of 2 arises from the fact that for
each k we have two one-electron states �one for each spin�
which is taken into account by this additional factor. If we
now replace the sums in Eq. �18� by integrals by the rule
�kf�k�→ �2��−3��dkf�k�, we obtain for �j�T�:
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FIG. 2. Comparison of the lifetimes of excited electrons in alu-
minum as arising from electron-electron scattering only. Displayed
is the regime close to the Fermi edge. The open triangles corre-
spond to data obtained from the approach at hand, i.e., integration
of Eq. �22� �T=10 K�. The solid circles are experimental data cor-
rected for transport effects taken from Ref. 4 while the solid line is
the analytical result from Ref. 1. Solid diamonds are the results of
an DFT-GW calculation as shown in Ref. 8. The number of sample
points for the Monte Carlo integration of Eq. �22� is N=2	107, the
broadening parameter is �=1 /25.

FIG. 1. Schematic representation of the underlying collision
processes in momentum space as described in the text �kF denotes
the Fermi momentum�. �a� A collision process through which an
excited electron at momentum j vanishes from its initial momentum
mode. �b� A collision process “filling” a hole within the Fermi
sphere at j. The dashed circles denote the possible outgoing mo-
menta under momentum and energy conservations.
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�j�T� =
4�2

26��5� � dkdq� e2

��0�q2 + qTF
2 ��

2

F�k,q,j,T�

	 ��k+q + �j−q − �k − �j�

=
e4

16��0
2�5� � dkdq

F�k,q,j,T�
�q2 + qTF

2 �2

	 ��k+q + �j−q − �k − �j� . �19�

For the numerical calculation it is advantageous to transform
the momenta to dimensionless parameter; thus we introduce
coordinates relative to the Fermi momentum: k→kF ·k�, thus
q→kF ·q� and thus j→kF · j�.

Applying all these substitutions to Eq. �19� leads to

�j��T� =
mee

4

8�3�0
2�5� � dk�dq�

F�k�,q�,j�,T�
�q�2 + 0.665rS�2

	 ��k� + q��2 + �j� − q��2 − k�2 − j�2� , �20�

with fk�= �exp���F�k�2−1��+1�−1 and me=9.1	10−31 kg
for the free-electron mass.

For the numerical evaluation of the last expression we
approximate the delta distribution by a suitable nonsingular,
e.g., Gaussian-type function:

���� 	
1

�2�
e−��2/2�2�, �21�

where � denotes the standard deviation which has to be in
some sense small. More details on this somewhat subtle ap-
proximation are given below. Thus we get the following in-
tegral for the rate:

�j��T� =
1.05 fs−1

�
·� � dk�dq�

F�k�,q�,j�,T�
�q�2 + 0.665rS�2

	 exp� 1

2�2 ��k� + q��2 + �j� − q��2 − k�2 − j�2�2� .

�22�

For aluminum we choose rS=2.07. The six dimensional in-
tegrals are solved numerically without any further simplifi-
cation using a standard Monte Carlo package as imple-
mented in the MATHEMATICA code. Of course this specific
integral could be evaluated in other ways; however, to dem-
onstrate the feasibility of our approach in general we proceed
as indicated.

As one can see in Fig. 2 there is rather good agreement
between our results, other theoretical approaches, and experi-
ment. Our data is denoted by open triangles. The solid line
corresponds to the many-body approach based on jellium1 as
outlined in Sec. I. The solid diamonds denote the result of a
more sophisticated many-body approach which takes the lat-
tice into account and exploits density-functional theory.8 The
solid circles indicate the parts of the measured decay rates
that are attributed to direct electron-electron scattering, i.e.,

after removal of transport effects according.4 Figure 3 shows
the analytical result from1 �263rS

−5/2��−�F�−2 �eV�2 �fs��,
which is supposed to be valid close to the Fermi edge, boldly
continued to all energies �solid line�. Furthermore results of
our approach for all energies are displayed �dots�. Obviously
there are deviations for electrons at higher energies while the
agreement remains very good in the limit of “low-energy
holes.”

However, a comment should be added here. For this more
or less realistic model we get lifetimes on the order of some
femtoseconds. The decay time of correlation function �12� is,
very roughly, on the order of h /�max, with �max being the
bandwidth. For about 10 eV this yields ca. half a femtosec-
ond. Thus the separation of those time scales, which has been
mentioned in Sec. III as a criterion for the truncation per-
formed above, is not as clear as often in other fields, such as,
e.g., quantum optics. This indicates that such models, at short
lifetimes, are barely in the Markovian weak-coupling regime,
and hence memory effects and/or higher orders may have
significant influence.

To the choice of �: Obviously a smaller � leads to a better
approximation of the  function which should be the correct
weight distribution at least in the long-time limit. However,
recall the above discussion of the time independence of the
decay rate. For analogous reasons larger � should leave the
result unaltered, as long as � remains small enough to allow
for a linearization of the dispersion relations on the scale of
�. A large � is numerically favorable since the larger � is,
the larger will be the fraction of the Monte Carlo points that
significantly contribute to the integral. Moreover of course
this yields a decreasing statistical error. Thus, for a given
statistical integration error, a larger � simply implies a longer
computing time. Hence finding the best � is an optimization
process that should be done carefully. However, to name a
number, the computation time for one of the lifetimes as
displayed in Figs. 2 and 3 is about an hour.

0.0 0.5 1.0 1.5 2.0
��

5�10�16

1�10�15

5�10�15

1�10�14

5�10�14

1�10�13

Τ����

FIG. 3. Comparison of the logarithmic lifetimes of excited elec-
trons �above ��=1� and holes �below ��=1� in aluminum as arising
from electron-electron scattering only. Displayed is a wide regime
around the Fermi edge. Data are plotted over rescaled energy, ��
=� /�F. Displayed are results obtained from Fermi-liquid theory as
cited in Ref. 1 �solid line, T=0 K� and from numerical integration
of Eq. �22� �dots, T=10 K�. The number of sample points for the
Monte Carlo integration of Eq. �22� is N=107 and �=1 /10.
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IV. SUMMARY, CONCLUSION, AND OUTLOOK

In this paper we considered the lifetimes of �quasi�parti-
cles or holes in interacting quantum gases �only electronic
part�, using a projection operator technique. This yields a
formula for the decay rates into which essentially the perti-
nent effective quasiparticle dispersion relations of the par-
ticles and their screened interactions enter. This formula
turns out to be in accord with an expression that may be
found from a certain implementation of the self-energy for-
malism. The rates are eventually given in terms of integrals
which can be cast into a form which is well suited for a
Monte Carlo integration scheme. While this work essentially
aims at demonstrating the feasibility of this approach in gen-
eral, the method has been concretely applied to a jellium
model featuring a Thomas-Fermi screened interaction �tuned
for aluminum� as a simple example. Here it yields reasonable
results while requiring moderate computational effort. This
motivates an application of the approach to more complex
systems. However, the results on life and correlation times
indicate that such systems are, for short lifetimes �high elec-
tron energies, etc.�, barely Markovian and thus the decay
may not even be strictly exponential. This hints at a necessity
to include higher order terms in future investigations in this
regime.

The approach at hand aimed at generating an autonomous
linear equation of motion for single electron occupation
number �11�. However a slight modification of the projection
used here may directly yield linear equation of motion for all
electron occupation numbers, i.e., a linearized Boltzmann
equation. As well known, the latter is a traditional starting
point in investigating, e.g., transport properties. To those
ends one would use a projection very much like the one
discussed here �Eq. �8�� but summed over all occupation
numbers j. The reasonable results on lifetimes presented in
this work may be viewed to encourage further investigations
in that direction.
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APPENDIX: DERIVATION OF THE DECAY RATE

In this section we show the derivation of Eq. �16�. The
main work is to exploit the two commutators and finally the

trace. First we exploit the commutator �V̂�0� ,�j�:

�V̂�0�,�j� =
1

2 �
k,l,q

V�q��ak+q
† al−q

† alak,aj
†aj − f j�

=
1

2 �
k,l,q

V�q��ak+q
† al−q

† alak,aj
†aj� .

Since the commutator is zero for j�k+q , l−q ,k , l, we just
have to regard cases where one of the indices is equal to j
and note that aiai

†ai=ai and ai
†ai

†ai=0. From this follows that

�V̂�0�,�j� =
1

2�
k,q

V�q�ak+q
† aj−q

† akaj −
1

2�
l,q

V�q�aj+q
† al−q

† alaj

−
1

2�
k,q

V�q�aj
†ak

†aj−qak+q

+
1

2�
l,q

V�q�aj
†al

†al−qaj+q. �A1�

With suitable index shifts and the fermionic commutator re-
lations, we finally obtain for the commutator

�V̂�0�,�j� = �
k,q

V�q��ak+q
† aj−q

† akaj − aj
†ak

†aj−qak+q� .

�A2�

Now we deal with the second commutator �V̂�
� , �̃ � �j�
where we first regard the case j�k+q , l−q ,k , l �we abbre-
viate giª1− f i�:

�V̂�
�,�̃ � �j��j

=
1

2 �
k,l,q

V�q��ak+q
† �
�al−q

† �
�al�
�ak�
�,�̃s � �j�

=
1

2 �
k,l,q

V�q�e�ı/����k+q+�l−q−�k−�l�


	 �ak+q
† al−q

† alak, �
i�j

�f iai
†ai + giaiai

†� � �j� ,

where the annihilation and creation operators act only on the
respective subspaces of the tensor product of the single den-
sity operators. With aiaiai

†=0, ai
†aiai

†=ai
†, the rules above,

and u�
�ªexp� ı
� ��k+q+�l−q−�k−�l�
� it follows:

�V̂�
�,�̃ � �j��j =
1

2 �
k,l,q

V�q�u�
�

	�fkf lgl−qgk+q − gkglf l−qfk+q�

	 ak+q
† al−q

† alak �
i�j,k,

l,k+q,

l−q

�i
eq

� �j. �A3�

For the cases where one of the indices k+q , l−q ,k , l is equal
to j, we obtain analogous

MEHMET KADIROḠLU AND JOCHEN GEMMER PHYSICAL REVIEW B 79, 134301 �2009�

134301-6



�V̂�
�,�̃ � �j�=j =
1

2�
k,q

V�q�ak+q
† �
�aj−q

† �
�ak�
�aj�
� �
i�j,k,

j−q,

k+q

�i
eq�gjgj−qgk+qfk + f jf j−qfk+qgk�

+
1

2�
l,q

V�q�aj+q
† �
�al−q

† �
�aj�
�al�
� �
i�j,l,

l−q,

j+q

�i
eq�gjgl−qgj+qf l + f jf j+qf l−qgl�

−
1

2�
k,q

V�q�ak+q
† �
�aj

†�
�ak�
�aj+q�
� �
i�j,j+q,

k,k+q

�i
eq�gj+qgkgjfk+q + f jfkf j+qgk+q�

−
1

2�
l,q

V�q�aj
†�
�al−q

† �
�aj−q�
�al�
� �
i�j,j−q,

l,l−q

�i
eq�gj−qglgjf l−q + f jf lf j−qgl−q� . �A4�

Again with suitable index shifts and substitutions it follows for the commutator:

�V̂�
�,�̃ � �j�=j = �
k,q

V�q��ak+q
† �
�aj−q

† �
�ak�
�aj�
� − aj
†�
�ak

†�
�aj−q�
�ak+q�
���gjgj−qgk+qfk + f jf j−qfk+qgk� �
i�j,k,

j−q,

k+q

�i
eq.

�A5�

Now we exploit the trace:

C��� = Tr��V̂���,�̃ � �j��V̂�0�,�j�� = Tr���V̂���,�̃ � �j��j + �V̂���,�̃ � �j�=j��V̂�0�,�j��

= Tr��V̂���,�̃ � �j��j�V̂�0�,�j��

A���

+ Tr��V̂���,�̃ � �j�=j�V̂�0�,�j��

B���

,

where we split it into two parts and exploit them, respectively:

A��� =
1

2 �
k,l,q

x,y

V�q�V�y�u���G�k,l,q,T�Tr ak+q
† al−q

† alak �
i�j,k,
l,k+q,

l−q

�i
eq

� �j�ax+y
† aj−y

† axaj − aj
†ax

†aj−yax+y

=
1

2 �
k,l,q

x,y

V�q�V�y�u���G�k,l,q,T�Tr ak+q
† al−q

† alak �
i�j,k,
l,k+q,

l−q

�i
eq

� �jax+y
† aj−y

† axaj

I

−
1

2 �
k,l,q

x,y

V�q�V�y�u���G�k,l,q,T�Tr ak+q
† al−q

† alak

II

�
i�j,k,
l,k+q,

l−q

�i
eq

� �jaj
†ax

†aj−yax+y ,

�

�A6�

with G�k , l ,q ,T�= fkf lgl−qgk+q−gkglf l−qfk+q. We focus now on the traces. For taking the trace we use the occupation number
representation.
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Analysis of part I of A�
�:

Tr

⎧���������⎨
���������⎩

a†
k+qa†

l−qalak

i�=j,k,
l,k+q,
l−q

̺eq
i

� �� �
Ξ

⊗∆ja
†
x+ya†

j−yaxaj

⎫���������⎬
���������⎭

=
�

n1,...,nr

�n1, . . . , nr|a†
k+qa†

l−qalak · Ξ ⊗ ∆j · a†
x+ya†

j−yaxaj|n1, . . . , nr�⊗ .

�A7�

Since under consideration no one of the indices k , l ,k+q , l
−q is equal to j, this trace is zero for cases with y�0 which
is valid for II also. The case y=0 must be analyzed indepen-
dently.

I for y=0 �now we write down the sum again� we have

1

2�
k,l

q,x

V�q�V�0�u�
�G�k,l,q,T�Tr�ak+q
† al−q

† alak · �

� �j · ax
†aj

†axaj� . �A8�

Here we have two summands: the case where k+q= l and l
+q= l→q=0:

1

2�
k,l

q,x

V�q�V�0�u�
�G�k,l,q,T�Tr�ak+q
† al−q

† alak · �

� �j · ax
†aj

†axaj�

=
1

2 �
k,q,x

V�q�V�0�u�
�G�k,k + q,q,T�

	Tr�ak+q
† ak

†ak+qak · � � �j · ax
†aj

†axaj�

+
1

2 �
k,l,x

V�0�V�0�u�
�G�k,l,0,T�Tr�ak
†al

†alak · �

� �j · ax
†aj

†axaj� = 0, �A9�

since G�k ,k+q ,q ,T�=G�k , l ,0 ,T�=0. For II the argumen-

tation is analogous. Thus there is left just one more possibil-
ity: the case j=x+y for which we obtain from Eq. �A6�:

1

2 �
k,l,q,x

V�q�V�y�u�
�G�k,l,q,T�Tr�ak+q
† al−q

† alak · �

� �j · aj
†aj−y

† aj−yaj� −
1

2 �
k,l,q,x

V�q�V�y�u�
�G�k,l,q,T�

	Tr�ak+q
† al−q

† alak · � � �j · aj
†aj−y

† aj−yaj� = 0,

�A10�

so that it finally follows that A�
�=0.
For B�
� we have

B�
� = �
k,q

x,y

V�q�V�y�F�k,q,j,T�Tr��ak+q
† �
�aj−q

† �
�ak�
�aj�
�

− aj
†�
�ak

†�
�aj−q�
�ak+q�
��

�
i�j,k,

j−q,

k+q

�i
eq�ax+y

† aj−y
† axaj − aj

†ax
†aj−yax+y��

= − 2�
k,q


V�q�
2�gjgj−qgk+qfk + f jf j−qfk+qgk�

	cos���k+q + �j−q − �k − �j�
� , �A11�

from this follows Eq. �16�.
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